THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
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* Tutorial exercise would be uploaded to blackboard on Mondays provided that there is a

tutorial class on that Thursday. You are not required to hand in the solution, but you are
advised to try the problems before tutorial classes.

* Please send an email to echlam @math.cuhk.edu.hk if you have any questions.

Most rings that we will encounter or use are rings with unity, so unless specified otherwise,
”a ring” will mean ”’a ring with unity”’.
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10.
11.

12.
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Let R be a commutative ring, show that for any a € R, the evaluation map ev, : R[x] —
R defined by ev,(f(z)) = f(a) is a ring homomorphism. Determine its kernel.

. If R is not commutative, we can still define the polynomial ring R|[x] as before. Give an

example showcasing that the evaluation map is no longer a ring homomorphism.

. For a commutative ring Rz, prove that it is a field if and only if it contains precisely two

ideals.
Determine whether or not S'is a subring of R in the following cases:

(a) S is the set of rational numbers of the form § where b is not divisible by 3. R = Q.

(b) S is the set of linear combinations of {1, cos(nt),sin(nt)} for n € Z, R = C(R)
the set of continuous functions on R.

. Determine the set of units in Z,,. (Hint: What are the generators of Z,, as groups?)

Let I, J be ideals of aring R, define I+J = {a+b: a € I,b € J}, show that T+ .J, INJ
are again ideals of R.

. Let R, R’ be rings, prove that R x R’ with addition given by (a, a’)+(b,0') = (a+a’, b+0b')

and multiplication given by (a, a’)(b,0’) = (ab,d’t’) endow R x R’ with the structure of
a ring with additive identity given by (0, 0) and multiplicative identity given by (1, 1).

. Show that R[z]/(z% + 1) = C.

. Is Zg = 7o X Z3 as rings?

Are Z[z]/{(z* + 7) and Z[z]/(22* + T) isomorphic?

Determine the ring structure of Z[x]/(6, 2z — 1) and Z[z](x? + 3,5) in terms of more
familiar rings.

Show that a finite field " has order a power of a prime: |F| = p*.

Suppose that a? = a for every a € R, does R necessarily have characteristic 2?



14. Let R be a commutative ring and a € R, consider the quotient R' = R[z]/{ax — 1).
(a) Show that any element 3 € R’ can be written as [bz*] for some b € R, here [bz*] is
the class of bz, i.e. [b2*] = ba* + (ax — 1) in the quotient.

(b) Show that the ring homomorphism ¢ : R — R’ by ¢(b) = [b] has kernel given by
those b with a"b = 0 for some n.

(c) Show that R’ is the zero ring if and only if ™ = 0 for large enough 7.

15. Determine whether the following polynomials are irreducible in their respective polyno-

mial rings.
@ f(z)=2+222+2 -9 € Qlx].
(b) f(x) =227 — 1525 + 602° — 182" + 92 — 122% + 62 + 24 € Q|z].
© fla)=2= =a? "+ 2?2+ +a? + o+ 1€ Zal
d) f(z)=2"—2—-1€ Q]
@ f(z,y) =2"+y* € Clz,y]
® flz,y) =y —2* € Qlx,y].

16. (a) Show that z* + 1 is irreducible in Z[z].

(b) Prove that z* + 1 is reducible in Z,[x] for every prime p by looking at the following
three cases:
i. If =1 = @ for some a € Z,.
ii. If 2 = b? for some b € Z,,.

iii. Otherwise, since the group of unit Z is a cyclic group of even order, both —1, 2
have odd order, so their product has even order, i.e. —2 = ¢? for some ¢ € L.



